If a3 + b3 = 1344 and a + b = 28, then (a + b)2 – 3ab is equal t
a3 + b3 = [a + b] [a2 + b2 – ab]
(a + b)2 – 3ab = a2 + b2 + 2ab – 3ab
= a2 + b2 – ab
A.T.Q
1344 = 28[a2 + b2 – ab]
a2 + b2 – ab = 48
If x+y+z=19, XYZ =216 and xy + yz + zx =114 then the value of √x3 + y3 + z3 + xyz is:
If 8x2 + y² – 12x – 4xy + 9 = 0 then the value of (14x – 5y) is:
If a + b + c = 4 and ab + bc + ca = 1, then find the value of a³ + b³ + c³ – 3abc is: